

Business

Cooperative Research Centres Program SOUTH
AUSTRALIAN
RESEARCH &
DEVELOPMENT
INSTITUTE
PIRSA

Bonamiasis in farmed Native Oysters (*Ostrea angasi*)

FRDC Project number: 2015/001

Jessica Buss - SARDI Aquatic Sciences and Flinders University Marty Deveney - SARDI Aquatic Sciences

and Regions SA

Background and aims

Ostrea angasi (Native Oyster) from South Australian farm

Bonamia

- Protozoan, 2–5 μm, infects oyster hemocytes
- Causes disease in Flat Oyster, Australia: Ostrea angasi
- Large body of work in Europe, NZ and North America, but not in Australia

Diagnostic tests - background

- Dec 2015 Jan 2016 initial SA farm screening:
 - Coffin Bay/ Streaky Bay positive for Bonamia exitiosa (no B. ostreae)

<u>Aims</u>

- 1) Assess prevalence and intensity on farm
- 2) Compare diagnostic tests (qPCR/histology/heart smear) to define:
- DSe (Diagnostic Sensitivity) Proportion of true (+)
- DSp (Diagnostic Specificity) Proportion of true (-)
- 3) Identify Australian Bonamia isolates (AAHL)

Diagnostic tests - results/implications

 AAHL: Bonamia isolate in southern Australia (NSW/VIC/SA): Bonamia exitiosa

Prevalence and intensity at the three farm sites

	Coffin Bay (1)	Coffin Bay (2)	Streaky Bay
Prevalence (%) (credible intervals)	0.90 (0.78–0.99) ^a	0.90 (0.78–0.99) ^a	0.59 (0.46–0.72) ^b

- >50% prevalence in SA
- Best single test: histology; best combined tests: histology/qPCR
- DSe/DSp data form basis for survey designs
- Larger animals, >2 years: highest intensity and clinical disease
- High intensity correlated with low meat to shell ratio

Transmission - background

- Infection dynamics of B. exitiosa in O. angasi unknown
- Laboratory studies designed to assess infection

Aims

South Australia

- 1) Assess Bonamia infection dynamics in O. angasi
 - Time to first infection
 - Changes in intensity over time
- 2) Create infection model for *Bonamia* studies

Victoria

1) Assess which husbandry stressors \uparrow mortality and *B. exitiosa* infection in *O. angasi*

Transmission - results

<u>Victoria</u>

- Stressors ↑ mortality and
 ↑ B. exitiosa infection:
 - Heat (22°C), starvation
 (56 d no food) and tumbling

- Control
 - Negative for *B. exitiosa*
- Exposed
 - Day 12: First mortalities
 - Day 15: Mortalities in all tanks
 - **Day 21:** 44.2–55.2% mortality
 - **Day 40:** 85.1–91.2% mortality
 - **Day 10:** 0.51 prevalence
 - **Day 11+:** 0.9 prevalence

Kaplan-Meier survival curve for *O. angasi* spat over 40 days. Black lines represent exposed treatments and grey lines represent control un-exposed treatments. n=300. Log-rank and Breslow tests.

Transmission - implications

<u>Victoria</u>

 Regular exposure to physical stress, starvation & exposure to increased temperature should be avoided

- Ostrea angasi-Bonamia exitiosa infection dynamics:
 - Rapid and lethal infection in juvenile O. angasi: faster than other oyster-Bonamia spp. systems
 - Direct infection between live oysters
 - Bonamia exitiosa infects hosts of different ages
- Provides infection model for work on B. exitiosa
 - Breeding program for resistance

Farm trials - background

- Farm seasonality and other
 B. exitiosa infection dynamics
 in O. angasi unknown
 - Important for farm management
- Field trials

<u>Aims</u>

Victoria

1) Effect of basket depth and fouling on *O. angasi* mortality (Port Phillip Bay, VIC)

- 2) Assess seasonality of *B. exitiosa* infection in *O. angasi* in SA
- Monitor O. angasi cohort seasonally at 4 SA farm sites (2 x Coffin Bay, Cowell and Streaky Bay)
- Measure B. exitiosa prevalence and intensity

Farm trials - environmental influences

South Australia

Intertidal environmental parameters did not influence infection

<u>Victoria</u>

• Subtidal sites: Deeper and cleaner baskets \downarrow *O. angasi* mortalities

Farm trials - SA temperature

- Cowell had highest max summer T°C
 - On this day: >42°C for 2 h
- Cowell lowest min winter T°C
- SA intertidal systems are harsh environments
- Suitability for O. angasi

Mean temp (above probe)

Farm trials - prevalence & intensity

- Prevalence
 - Increases over time, no seasonality
- Rapid prevalence increase in Coffin Bay
 - Coffin Bay sites: >0.50 after 6 mo.
 - Streaky Bay/Cowell: >0.50 after 9 mo.
 - Cowell: Lowest prevalence after 1 year
 - Helps select farming regions

- Intensity
 - Low (3–7 cells/slide), no clear increase over 12 months
 - In general:
 - Spring/summer earlier/lighter stages of infection
 - Autumn/winter heavier stages of infection
 - No uniform pattern across all sites

Farm trials - implications

- Need to consider B. exitiosa in industry development / reef restoration
- Bonamia exitiosa prevalence increases over time (0.57–0.88)
- Seasonal intensity patterns
- High temperature variability in intertidal systems (max: 48.7°C / min 5.8°C)
 - Sub-tidal sites worth exploring
- Prevalence increased faster at some sites (Coffin Bay)
 - Differences oyster population densities
 - New sites should be assessed for B. exitiosa prior to development
 - Suitable culture sites: slower prevalence increase
 - Industry expansion: consider development of a breeding program

Decontamination - background

- No decontamination criteria for Bonamia exitiosa
- Important for farm management and translocation

Aims

1) To assess concentration and exposure criteria for deactivation of *B*. exitiosa in sea water using sodium hypochlorite (NaOCl), Detsan, or Agri dyne

Decontamination - results

Two treatments achieved 100% efficacy:

- 1) Sodium hypochlorite (NaOCl): 40,000 ppm (4%) free chlorine for 10 min
 - 40,000 ppm free chlorine = 320 mL NaOCl (12.5% free chlorine) / 1 L water
 - \$18 for 5 L (12.5% NaOCI) excl. delivery & GST (\$3.6 / L) -> Chem-Supply
 - Corrosive, sensitive to organic matter
- 2) Iodine based disinfectant (Agri dyne): >2000 ppm (0.2%) iodine for 1 min
 - 2000 ppm free iodine = **125 mL Agri dyne (1.6% free iodine) / 1 L water**
 - \$163 for 25 L, excl. delivery, & GST (\$6.52 / L) -> Tasman Chemicals
 - Less corrosive, more stability with organic matter

Detsan (quaternary ammonium compound)

- Maximum efficacy: 27% -> not recommended for decontamination, useful cleaning product (prior to disinfection)
- \$110 for 25 L, excl. delivery & GST (\$4.4/L) -> Chemetall

Decontamination - implications

- Data for B. exitiosa decontamination for hatcheries and farms
- Effective for B. exitiosa decontamination:
 - 40,000 ppm (4%) free chlorine for 10 min (NaOCI)
 - >2000 ppm (0.2%) free iodine for 1 min (Agri dyne)
- Agri dyne is more cost effective and less corrosive
- Detsan was not effective but useful for cleaning
- Minor use permits (PER 14029 and PER 82160) for oyster pathogens require amendment for use against *B. exitiosa*
 - Permit 14029: Authorises 1% free chlorine (NaOCl)
 - Permit 82160: Authorises 0.1% iodine (Agri dyne) (for POMS only)

Species susceptibility - background

- Bonamia at low prevalence in Crassostrea gigas (Europe) (Lynch et al. 2010)
 and Saccostrea glomerata (Georges River) (Spiers et al., 2014)
- No clinical disease
- Susceptibility of C. gigas and Saccostrea sp. to B. exitiosa infected
 O. angasi unknown

<u>Aims</u>

- 1) Expose *C. gigas* and *Saccostrea* sp. to infected *O. angasi*
- 2) Assess *Bonamia* susceptibility of *C. gigas* and *Saccostrea* sp.

Species susceptibility - results

- 20 days: *Bonamia* in both species
- Higher intensity and prevalence in *Saccostrea* sp. than *C. gigas*
- Prevalence did not increase over time
- Low mortality:
 - Crassostrea gigas: 0.2% / Saccostrea sp.: 0.27%
 - Oysters were not dying due to disease by *Bonamia* after 60 days

Species susceptibility - implications

- Crassostrea gigas and Saccostrea sp. are susceptible to infection with Bonamia
- Negligible mortality indicates infection does not cause disease over 60d, but C. gigas and Saccostrea sp. are likely carriers of Bonamia
- Assess if C. gigas and Saccostrea sp. can transmit Bonamia
- Physical arrangement of O. angasi farms important:
 - Total oyster biomass (not just O. angasi) contributes to Bonamia infection

Outcomes for farmers

- Diagnostic information to inform surveillance programs
- Bonamia exitiosa infects rapidly and causes disease and mortality
- Death is not required for transmission
- Assess sites for Bonamia before commencing O. angasi culture
- ↓ mortality ↑ depth: investigate suitable culture systems
- Infection model created controllable exposures and infection
- Other means of management:
 - Choose sites with low infection
 - Subtidal site selection with uni-directional flow
 - Decontaminate using NaOCI/Agri dyne
 - Consider total biomass when choosing sites (Saccostrea/Crassostrea/Ostrea)
 - C. gigas/Saccostrea sp. influence Bonamia and O. angasi health

Future work

- Understand role of cupped oysters in Bonamia transmission
- Breed for resistance

Acknowledgements

2015-001 "Bonamiasis in farmed Native Oysters (*Ostrea angasi*)" is supported by funding from FRDC on behalf of the Australian Government

SAOGA, participating oyster farmers

Supervisors: Assoc. Prof. Marty Deveney &

Assoc. Prof. James Harris

Tracey Bradley (Department of Jobs, Precincts and Regions Victoria)

Nick Moody, David Cummins, Mark Crane, Peter Mohr, John Hoad, (CSIRO AAHL AFDL)

PIRSA Aquaculture

Xiaoxu Li and the SARDI Aquaculture Program group

Thank you for listening Companies to the first for the first transfer to the first for the first